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Summary 
An investigation was conducted to examine  the 

nature of  fracture  of silicon carbide and particle for- 
mation in wear. Sliding friction experiments were 
conducted with the single-crysfal silicon carbide 
{Wl j surface sliding in the  (1010) direction in con- 
tact with various iron-based  binary alloys. Ex- 
periments were conducted with a  load  of 0.2 N, at  a 
sliding  velocity  of  3x10-3 meter  per  minute in a 
vacuum  of 10-8 pascal at  room  temperature. 

The results of the investigation indicate that multi- 
angular  and spherical wear particles of  silicon car- 
bide are observed as a result of multipass sliding. The 
multiangular wear particles are produced by primary 
and-secondary cracking of  cleavage planes [ OOO1 ] , 
[ lolo],  or { 1120)  under  the  Hertzian stress field or 
local inelastic deformation  zone  at the interface.  The 
spherical wear particles of  silicon carbide may be 
produced by two  mechanisms: (1) a  penny-shaped 
fracture  along the circular stress trajectories under 
the local inelastic deformation zone, and (2) attrition 
of  wear particles. 

Introduction 
Silicon carbide is expected to be one of the most 

desirable materials from various aspects for use  in 
high-hardness and/or  temperature applications such 
as turbine blades, vanes and  shrouds in gas  turbine 
engines, ceramic seals, stable high-temperature 
semiconductors, first wall materials in a controlled 
thermonuclear reactors, and as abrasives for metal 
removal. 

The present authors have conducted  experimental 
work to determine the tribological properties of 
single-crystal silicon carbide (refs. 1  and 2). Wear 
particle characteristics, such as particle shape, com- 
position, size distribution,  quantitative levels, 
physical and chemical properties, are sufficiently 
able to qualify and specify the tribological behavior 
such as wear behavior, mode,  and  mechanism. 

Platelets of  hexagonal silicon carbide wear debris 
have been observed by the present authors with the 
formation of platelets, as a result of  silicon carbide 
sliding against itself and  pure metals (refs. 1 and 2). 
Such wear particles, having crystallographically 
oriented sharp edges, indicated that  fracture wear  of 
silicon carbide was due to cleavage  of both prismatic 
and basal plane. 

Hexagonal and rectangular platelet wear debris are 
also observed with manganese-zinc  ferrite surfaces as 
a  result'of sliding contact with  itself and  pure  metals 
(refs. 3 and 4). The experimental evidence showed  the 
fracture wear of  manganese-zinc ferrite is due to 
cleavage of { 110) planes. 

Coefficients of friction for iron-based  binary 
alloys (alloying elements  were Ti,  Cr,  Mn, Ni, Rh, 
and W) sliding against silicon carbide are generally 
twice as large (or more) as those  observed for  pure 
metals or for silicon carbide sliding against silicon 
carbide (refs. 5 and 6 ) .  It is of interest to  develop  an 
understanding of the fracture  behavior  and wear par- 
ticle generation of silicon carbide, such  as under high 
adhesion conditions in  sliding contact with various 
alloys. 

Another  matter of interest is  knowing whether  any 
other types of silicon carbide wear particle, such as 
spherical wear particles, can be generated  under  con- 
ditions of  high adhesion  and friction. 

The objective of the present paper is to examine 
the nature  of  fracture of  silicon carbide and wear 
particles relative to  fracture  wear. Friction ex- 
periments were conducted with the single-cryztal 
silicon carbide { 0001 ] surface sliding  in the  (1010) 
direction in contact with various iron-based binary 
alloys. All experiments were conducted with a  load of 
0.2 newton,  at  a sliding  velocity  of  3x10-3 meter per 
minute with a  total sliding distance of  2.5 millimeters 
in  single-pass sliding, in a  vacuum of pascal at 
room  temperature. When alloy surfaces are in con- 
tact with  silicon carbide under  a  load of 0.2 newton, 
the alloy around the contact area is subjected to 
stresses that  are close to the elastic limit  in elastic 
deformation region and/or exceed it. 

Materials 
The single-crystal silicon carbide used  in these ex- 

periments was a 99.9-percent-pure compound of 
silicon and  carbon  and  had  a  hexagon-closed  packed 
crystal structure.  The  composition  data  and  hardness 
of single-crystal silicon carbide are presented in table 
I .  The  Knoop  hardness w e  2954  in the (1010) direc- 
tion and 2917 in the (1120) direction on  the basal 
[OOOl j plane  of silicon carbide (ref. 7). 

Table I1 presents the analyzed  compositions in 
atomic percent and Vickers hardness of iron-base 
alloys, which are used in this investigation and 
prepared by Stephens  and  Witzke (ref. 8). The  iron- 



base  binary alloys of reference 8 were prepared by 
arc-melting the high-purity iron  and high-purity 
alloying elements (Ti, Cr, Mn, Ni, Rh, and W). The 
solute concentrations ranged  from  approximately 0.5 
atomic percent for those  elements that have  extreme- 
ly limited solybility in iron  up  to approximately 16 
atomic percent for those  elements that  form  a con- 
tinuous series  of solid solutions with iron. 

Experimental  Apparatus 
and  Procedure 
Apparatus 

The  apparatus used  in this investigation is shown 
schematically in figure 1 and is described in reference 
2. 

Specimen  Preparation 

The disk flats of  silicon carbide  and the iron-base 
binary alloy pin specimens  were polished with 
3-micrometer-diameter  diamond  powder  and  then 
1-micrometer  aluminum  oxide (A1203) powder.  The 
radius of the pins was  0.79 millimeter. The pin and 
disk surfaces were rinsed with  200 proof ethyl 
alcohol. 

Experimental  Procedure 

The specimens  were  placed in the  vacuum 
chamber,  and  the  chamber was evacuated  and subse- 
quently  baked out  to  obtain  a pressure of 1.33x10-* 
pascal (10-lo torr). When this pressure was obtained, 
argon gas was  bled back  into  the  vacuum  chamber to 
a pressure of  1.3 pascal. A -1000-volt-direct-current 
potential was applied to the  specimens, and  the 
specimens (both disks and pins) were argon  sputter 
bombarded  for 30 minutes.  One  hour  after the sput- 
tering operation was completed the vacuum  chamber 
was reevacuated, and AES (Auger  emission spec- 
troscopy) spectra of the disk surface were obtained to 
determine the degree  of  surface cleanliness. When the 
desired degree  of  cleanliness  of disk was achieved, 
friction experiments were conducted. 

A  load of 0.2 newton was applied to the pin-disk 
contact by deflecting the  beam  of figure 1. Both  load 
and friction force were continuously  monitored dur- 
ing a friction experiment. Sliding velocity  was 3 
millimeters per minute, with a total sliding distance 
of 2.5 millimeters in single pass sliding. All friction 
experiments in vacuum were conducted with the 
system evacuated to a pressure of lo-* pascal. 

Results  and Discussion 
Cleanliness of Silicon Carbide Surfaces 

An  Auger emission spectroscopy  spectrum  of  the 
single-crystal silicon carbide IO001 ) surface was ob- 
tained  before  sputter cleaning. The crystal was in the 
as-received state  other  than  having been baked out in 
the  vacuum system. In  addition  to the silicon and  car- 
bon peaks, an oxygen peak was observed. The ox- 
ygen peak  and chemically shifted silicon peaks at 78 
and 89 electron volts (eV) indicated a layer  of Si02  on 
the silicon carbide surfaces as  well  as a  simple ad- 
sorbed film  of  oxygen (refs. 9  and 10). The Auger 
spectrum  taken  after the silicon carbide surface  had 
been sputter  cleaned clearly  revealed the silicon and 
carbon  peaks at 92 and 272  eV,  respectively. The ox- 
ygen peak was  negligible. 

Friction Behavior 

Multipass sliding friction experiments were con- 
ducted with iron-base binary alloys with various con- 
centrations of solute alloyed in iron in contact with 
single-crystal silicon carbide in vacuum.  The  binary 
alloy systems  were iron alloyed  with titanium, 
chromium,  manganese,  nickel,  rhodium,  or 
tungsten.  The tribological behavior of these materials 
has already been  discussed  in references 6 and 1 1 .  
Briefly, the friction-force traces obtained in this in- 
vestigation are generally characterized by a  sharp 
break in the  friction-force,  that  is, stick-slip 
behavior. The coefficients of friction for alloys, hav- 
ing high solute concentration (see example in fig. 
2(a)) or chemically  active alloying elements  (Mn, Ni, 
W, and Ti) generally decreased with the  number of 
passes, when repeated passes of the alloy riders were 
made  over the same single-crystal silicon carbide sur- 
face. The coefficient of friction for first pass sliding 
differed from those for the second and multiple pass 
sliding. This difference was due  to  a l.arge amount of 
alloy transfer  that  took place to the silicon carbide 
surface in the first, single-pass of the rider.  On the 
other  hand, the coefficients of friction for  the alloy, 
having low solute concentration (see fig. 2(b)) or 
chemically  less active alloying elements (e.g., Rh) 
were generally small changes  and fluctuated with the 
number of passes. 

Fracture  Wear 

The sliding  of an alloy rider on  a silicon carbide 
surface results in the  formation of cracks and  frac- 
ture pits in the  near  contact region of  the silicon car- 
bide surface as well as that  on  the metal rider (refs. 1 
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and 2). Figure  3  presents  scanning  electron 
micrographs of the wear tracks  on silicon carbide 
surfaces, where the wear tracks were generated by 
10-pass  sliding  of 8.06 atomic percent rhodium-iron 
alloy and 6.66 atomic percent tungsten-iron alloy 
riders, respectively. The wear tracks  are accompanied 
by microfracture pits. Silicon carbide wear debris has 
already been ejected from  the wear track in figure 
3(a), but  a particle of wear debris is still partially in 
the  microfracture pit in figure 3(b). Such  microfrac- 
ture  pits  and  wear  debris  have  generally 
crystallographically oriented sharp edges generated 
by  surface crackings along (1010) or  (1120) planes. 
The  bottom surfaces of the  fracture pits are generally 
very smooth.  This is due  to  the  subsurface cleavage 
along ( O O O 1 )  planes, which are parallel to  the sliding 
interface. 

Figure 4 presents a  scanning electron micrograph 
of  a wear track  on  a silicon carbide surface accom- 
panied by an exceptionally large fracture pit. A large 
light area  at the beginning of  wear track is a  fracture 
pit where the wear track was generated by  10-pass 
sliding of  a 8.12 atomic percent titanium-iron alloy 
rider across the surface. Most  of the silicon carbide 
wear debris has already been ejected from the wear 
track. The  smooth  surface at the bottom of the frac- 
ture pit is due  to  subsurface cleavage along (OOO1) 
planes. 

Figure 5 presents a  scanning electron micrograph 
and  an X-ray  map of a wear scar of a 8.12 percent 
titanium-iron alloy rider after it slid against the 
silicon carbide surface already shown in figure 4. The 
wear scar contains a large amount of silicon carbide 
wear debris which  was produced in multipass sliding 
of the alloy rider and was embedded in the alloy 
rider.  The  concentration of  white spots in figure 5(b) 
correspond to silicon carbide wear debris locations in 
figure 5(a)  where  silicon carbide transfer is evident. 
Figure 6 is a  scanning electron micrograph at  the 
beginning of the wear scar examined at high 
magnification (see the small rectangle in fig. 5(a)). 
Again, the copious  amount of  silicon carbide wear 
debris, having crystallographically oriented sharp 
edges, was  seen on  the wear scar of the alloy rider. 
The subject of the wear debris particle will  be discuss- 
ed  in more detail in  succeeding sections. 

Multiangular  Wear  Debris 

Figure  7 illustrates detailed examination  of silicon 
carbide wear debris produced by  10-pass sliding of 
riders on the silicon carbide surfaces. The  scanning 
electron micrographs clearly reveal evidences of 
various multiangular wear debris particles of silicon 
carbide, which transferred to the 1.02 atomic percent 
Ti-Fe alloy rider (fig. 7(a)). Wear debris was ob- 
served near  the silicon carbide wear track when 

sliding against the 3.86 atomic percent Ti-Fe alloy 
rider (fig. 7(b)). Such  multiangular wear debris par- 
ticles have crystallographically oriented sharp edges 
and  are nearly a rhombus, parallelogram, or  square 
in shape. These  shapes may-be related to surface  and 
subsurface cleavage  of ( lolo] ,  (11201, and (OOO1) 
planes. This  formation  of wear debris is consistent 
with earlier studies for silicon carbide in sliding con- 
tact  with  metals and itself (refs. 1  and 2). The  authors 
have already observed  the  hexagonal  fracture pit of 
silicon carbide and  the  formation  of platelet hex- 
agonal wear debris. These  shapes were observed to 
occur as a result of sliding of single-crystal silicon 
carbide  on itself in reference 1. It was also  observed 
for metals in contact with  silicon carbide  that  the 
crystallographically oriented cracking and  fracturing 
of silicon carbide  occurred  near  the  adhesive  bond to 
the metal  (ref. 2). 

Similar multiangular wear debris particles, having 
crystallographically oriented sharp edges,  were also 
observed with manganese-zinc ferrite in  sliding con- 
tact with pure  metals and manganese-zinc ferrite in 
vacuum (refs. 3 and 4). 

Spherical Wear  Debris 

It is understandable  that the fracturing of ceramic 
materials and  the  formation of  wear debris may be 
characterized by crystallographic orientation as 
demonstrated in the former sections. However,  more 
detailed examination of the wear track  on the silicon 
carbide  and  the wear scar on the alloy riders revealed 
in addition evidence  of spherical wear particles of 
silicon carbide. Figures 8(a) and (b) show a  scanning 
electron micrograph  and an X-ray dispersive analysis 
map of a nearly spherical wear particle and  a  groove, 
produced in a plastic manner by the plowing action 
of the particle. This dislodged spherical wear particle 
could be observed  near the wear scar of the 1.02 
atomic percent titanium-iron alloy rider after 
10-passes of sliding on  the silicon carbide surface. 

Figure 9 consists of scanning electron micrographs 
of rider wear scars after sliding against a silicon car- 
bide surface.  These figures reveal spherical indenta- 
tions and  straight  grooves  along the sliding direction 
on  the rider surfaces formed by indenting and  plow- 
ing the spherical wear debris. Such  a spherical wear 
particle and its indentation and  groove were primari- 
ly observed for  the alloys with low solute concentra- 
tions  presented in table 11. These results reveal that 
(1) a nearly spherical wear particle can  be  produced 
by sliding friction, (2) the wear particle plows  the  sur- 
face of the alloy rider during sliding, that  is, the 
hardness of the particle is much greater than  that of 
the alloy rider surface,  and (3) the wear particle in- 
cludes the  element of silicon, as shown by the  X-ray 
map of  Si K,. The next question is what is the real 
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wear debris particle, since the wear particle includes 
the element silicon. 

Figure 1.0 shows partially spherical wear debris 
particles observed on  the silicon carbide surfaces in 
sliding contact with the 1.02 atomic percent titanium- 
iron alloy rider. The nearly spherical particles are 
very similar to  the particle observed on  the wear scar 
shown in figure 8. The partially spherical wear par- 
ticles include a  multiangular and a spherical portion. 
Partially spherical wear particles were also observed 
with the  multiangular wear debris particles on  the 
wear scar  of the alloy, as shown in figure 11. 

Figure 12 presents brittle fractured wear particles 
observed  near  the wear tracks of silicon carbide sur- 
faces. The wear particles contain  both  sharp edges 
and  round  portions.  The  formation  of  sharp edges 
may be related to cleavage cracking in the  formation 
of  wear debris. The  round  portion would indicate 
that  the particles had been nearly or partially 
spherical before  fracturing.  These figures also in- 
dicate that  the wear debris particles are characterized 
by having the  feature of  being hollow.  The outer and 
inner circles of the particles seem to be concentric. 
Thus,  the  formation of partially spherical wear parti- 
cle and the brittle fracture  of  the particle indicates 
that  the spherical wear particle is silicon carbide, 
because of detection of  Si K, X-ray  map  from  the 
particles and  the brittleness of  the particles. 

It is  well known that  the spherical wear particles of 
metals are generated in rolling contact fatigue and 
that these are associated with bearing fatigue cracks 
(refs. 12 to 17). The evidence  of this investigation, 
however, clearly  reveals that  the rolling bearing  con- 
tact is not the only generation  source  of spherical 
wear particles. Multipass sliding  with  high adhesion 
may also be a  generation  source  of spherical wear 
particles for  the brittle material. 

Fracture Mechanisms 

As indicated in the  previous sections, sliding of the 
spherical alloy rider may  produce  fracture wear of 
silicon carbide,  and  subsequently  generate  mul- 
tiangular and spherical wear particles of silicon car- 
bide. Let  us consider the  fracture  mechanisms of 
silicon carbide in the  two sliding processes reported 
herein: 

(1) First single-pass sliding. The applied forces in 
this investigation contain both  normal  and tangential 
components,  the  latter of  which can arise from obli- 
que loading  and interfacial friction between rider and 
disk specimens. 

The  fracture of single-crystal silicon carbide may 
occur in the following processes, which are 
schematically shown in figure 13. First,  the alloy 
around  the  tip of  the rider is deformed well beyond 
the elastic limit and is deformed plastically (fig. 

13(a)). The mean contact pressure over the deformed 
area  approaches  the  hardness  of  the alloy. The 
counterface  of  the  flat silicon carbide is subjected to 
point-contact loading with a flat circle of radius a,. It 
is deformed elastically because the hardness  of silicon 
carbide is 10 to 50 times greater than the hardness of 
alloys examined in this investigation. If the  flat were 
an isotropic material,  the stress trajectories in the 
contact of figure 13(a)  would produce a Hertzian 
stress field  in the flat specimen  (ref. 18). Although 
the influence of the crystallographic orientation  must 
be  imposed on  the stress field  in this investigation, 
the stress trajectories may  be similar to the Hertzian 
field (ref. 19). The  cracking will suddenly initiate at  a 
pre-existing flow, almost certainly at the surface just 
outside the contact circle  where the  contours  of 
greatest principle tensile stress exist during loading. 

In figure 13(b), in addition to  an increase in load, 
friction force causes a  junction  growth  at  the inter- 
face, and  subsequently  promotes the stable growth of 
the initial cracks along the primary cleavgge planes of 
silicon carbide (OOO1) , ( 1010 1, and ( 1120 ) , this will 
further  generate new small cracks in the same  man- 
ner, as mentioned in the discussion of figure 13(a). 
Note that if the disk  were  in isotropic  material,  the 
Hertzian surface ring crack  propagation  downward 
occurs at  the circular stress trajectories in the  Hertz- 
ian elastic field, and  subsequently  a  Hertzian  (trun- 
cated) cone may be  formed (ref. 20). 

In figure 13(c), an increase in friction force causes, 
further,  junction  growth  and stable growth of the in- 
itial cracks.  The cracks (called primary cracks) have 
grown straight downward  and  the tip of  crack sub- 
surface becomes  curved  and  propagates  along  a 
secondary weak plane, that is, another  primary 
cleavage plane. For  example, when the sliding sur- 
face of silicon carbide is the basal plane, the secon- 
dary cracks propagate parallel to  the sliding surface, 
that is, to the basal plane  (ref. 21). 

In figure 13(d), rider sliding, which contains  both 
loading and  unloading of  normal load  and friction 
force, causes the stable growth of secondary cracks 
and  the intersecting of primary  and  secondary 
cracks. 

In figure 13(e), removal of fractured wear debris 
occurs as a result of stress relaxation in unloading. 
Again, for the single-crystal silicon carbide  the 
primary  and  secondary cracks may generate and  pro- 
pagate  along the cleavage planes (OOOl'), (1010)  or 
(1  120),  and then  they intersect each other.  The 
multiangular  fracture pits and multiangular wear 
debris of silicon carbide shown in figures 3, 4, 6, 7, 
and references 1  and  2  may  be  generated by the 
aforementioned fracture mechanisms. 

(2) Multipass sliding. The surfaces of pin and disk 
specimens include alloy wear, wear debris of alloy 
and silicon carbide, fracture pits and cracks as a 
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result of  the first slngle-pass sliding. The friction and 
wear behavior during  multipass sliding on  the same 
wear track may be strongly influenced by the  surface 
conditions  generated in the first pass. The multipass 
sliding  involves repeated loading cycles of the  normal 
load  and  friction force. A discussion, therefore,  of 
the  fracture behavior in multipass sliding  must be 
considered from two aspects: (1) stress concentration 
and (2) fatigue and  attrition  of particles formed. 

Stress concentration aspect. -The wear debris  of 
the alloy and silicon carbide, which transferred to the 
counter  surfaces or was dislodged,  and  fracture pits 
in the wear track  can  produce local stress concentra- 
tion at the  interface.  The sources of stress concentra- 
tion  are schematically shown in figure 14. There  are 
small silicon carbide  and alloy wear particles and/or 
fracture pits at the interface. The stress concentration 
at  the  sharp edges  of  wear debris or fracture pits may 
produce a small zone of inelastic deformation in 
silicon carbide about  the  sharp edge. Cracks will 
subsequently be initiated in the two possible favored 
geometries, as shown  in figures 15 and 16 (ref. 22). 
Figure 15 indicates that ( 1 )  the  sharp  point produces 
a plastic deformation region, (2) a deformation- 
induced flow or crack  already  produced in the first 
pass of  sliding develops into a crack or stable  growth 
of a crack  subsurface from  the inelastic deformation 
zone, (3) on unloading or application  of sliding fric- 
tion  force  the crack closes or expands and secondary 
cracks begin to develop, and (4) the cracks grow 
steadily below the  subsurface. Such fracture may 
produce  the  multiangular silicon carbide wear parti- 
cle during multipass sliding. 

Figure 16 indicates another possible cracking 
mechanism, that is, sudden development of a penny- 
shaped crack along  the circular stress trajectories.  It 
is known that  the penny-shaped crack is produced in 
amorphous materials such  as soda-lime glass under 
Vickers indentation  (ref. 22).  The influence  of 
crystallinity, however, is  imposed on  the crack 
geometries of  anisotropic  materials  such  as silicon 
carbide, and accordingly the  crack geometry is 
observed. Therefore, the penny-shaped cracks may 
not  be a circle in silicon carbide. But the possibility of 
a fracture such as  the  one shown  in figure 16, that is, 
a nearly circular or spherical fracture, would  still  ex- 
ist  in a single crystal because it  is possible that  the 
cracks  would grow and pile up in atomistic  terms by 
the  sequential rupture  of cohesive bonds  along  the 
circular stress trajectories  shown in figure 16. Thus, 
this  fracture mechanism may explain the possibility 
of  generating a spherical wear particle. 

Fatigue or attrition action aspect. -?%e repeated 
number of sliding passes, which include  repeated 
loading and unloading of  the  normal  load  and fric- 
tion  force,  produce a stressing and unstressing field 
in the  material, and subsequently  generate  cracks 

such as  those schematically shown in figures 13, 15, 
and 16. The  surface  fatigue wear  may be of great im- 
portance in the  formation  of cracks and  fractured 
wear debris in multipass sliding. 

Edges of wear particles such as  multiangular or ir- 
regular particles undergo  attrition by chipping during 
multipass sliding. The fragmentation  of the silicon 
carbide wear particle developed by the attrition  of 
wear particles may be another possibility for 
generating spherical wear particles. 

Conclusions 
As a result of sliding friction experiments con- 

ducted in this investigation with  single-crystal  silicon 
carbide in sliding contact with iron-base  binary alloys 
in high vacuum, the following conclusions are 
drawn: 

1 .  Multiangular and spherical wear particles of 
silicon carbide are observed as a result  of multipass 
sliding. 

2 .  Multiangular wear particles are  produced by 
primary and-secondary-cracking of cleavage planes 
(OOO1 ), [ 1010) or [ 1120) under  the  Hertzian stress 
field or local inelastic deformation  zone in the inter- 
face. 

3. Spherical wear particles of silicon carbide may 
be produced by two mechanisms: a penny-shaped 
fracture  along  the circular stress trajectories  under 
local inelastic deformation zone and  the  attrition  and 
fatigue  of wear particles. 

Lewis Research Center, 
National  Aeronautics and Space Administration, 

Cleveland,  Ohio,  October 10,  1979, 
506-16. 
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TABLE I. - COMPOSITION DATA, CRYSTAL  STRUCTURE, AND 

HARDNESS OF SINGLE-CRYSTAL SILICON CARBIDE 

(a) Compositiona 

si 

33.3% 66.6% 

Others P B 0 c 

@) Crystal   structure and hardness 

<O. 1 ppm <200 ppm  <lo0  ppm <500  ppm 

Crystal  Interatomic Lattice 
structure ratio, distance, 

I c/a A 

a C 

Hexagonal 
d4.  9069  d15.  079 d3. 073 close  packed 

'4.9058 '15.1183 '3.0817 

aManufacturer's  analysis. 
bRef. 7. 
'Ref. 23. 

24. 

Hardness, 
KHNb 

(OOOl)(ll~O,,  2917 
(0001)(10T9, 2954 
( lo io ) (oooq ,  2129 
(1070) perpendicular (0001) , 2755 
(1120)(0001), 2391 
(llZ0)  perpendicular (0001) , 2755 

TABLE TI. - CHEMICAL ANALYSIS, SOLUTE/IRON 

ATOMIC RADIUS RATIO, AND HARDNESS DATA 

FOR BINARY IRON ALLOYS (REF. 8) 

Solute  Analyzed  Analyzed  interstitial  Solute/iron  Vickers  hardness 
element  solute  content,  atomic  radius  number at 300 K 

content,  ppm  by  weight  ratios "- 
a t %  P 

Ti  1.02 56  92 7 1.1476 
~ ~~~~~~~ 

93 
2.08 " "_ " 117 
3.86 87 94 9  152 

286 

Cr  0 .99 --  --- -- 1.0063 57 
1.98 50 30 12 67 
3.92 " --- " 66 
7.71 40  85 10 82 

111 

___."" 
8.12 _ _  _ _ _  _ _  

J 16.2 -_ _ _ _   _ _  
Mn 0.49 " "_ " 0.9434 61 

75 
1.96 _ _   _ _ _  _ _  87 
3.93  32  134  8  140 
7.59 " "_ " 209 

Ni 0.51 -_  _ _ _  _ _  0.9780 66 
1 .03  28 90 6 75 
2.10 -- "_ " 91  
4.02 , 48 24  5 112 

160 
15.7 38 49 7 228 

rn 1.31 -_ _ _ _  _ _  1.0557 90 

.96 39 65  6 I -"" 

1 8.02 _ _  _ _  _ _ _  

2.01 
_ _  _ _ _  _ _  4.18 
22 175 20 1 103 

123 
8.06 159  19 133  12 

W 0.83 30 140 

152  21 61  23 3.46 
122 _ _  _ _ _  _ _  1.32 
102 1.1052 12 

190 6.66 _ _   _ _ _  _ _  
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F igu re  1. - High-vacuum  friction  and  wear  apparatus. 
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Figure 2 - Coeff icient  of  fr ict ion a s  func t i on  of number  of passes of alloy 
riders  across  single-crystal  si l icon  carbide  (Oool)  surface in  high  vacuum. 
Sl id ing velocity, 3 ~ 1 0 ‘ ~  meter  per  minute; load, 0.2 newton; room temper- 
ature;  vacuum, 10-8  pascal. 
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(a) Wear track  sliding  against 8.06 atomic  percent  Rh-Fe  alloy. 

rb) Wear track  sliding  against 6.66 atomic  percent W-Fe alloy. 

Figure 3. - Fracture  pits of single-crystal  silicon  carbide  in  contact  with 8.06 atomic 
percent  Rh-Fe  alloy,  and 6.66 atomic  percent W-Fe al loy as  results of ten  passes 
of rider  in vacuum (lo-* Pa).  Scanning electron  micrographs  of  wear  tracks  on 
silicon  carbide (0001) surface. Sliding  velocity, 3x10-3 meter  per  minute;  load, 
0.2 newton;  room  temperature. 
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Figure 4. - Large  fracture  pit  of  single-crystal  si l icon  carbide  in  contact  with 8.12 
atomic  percent  Ti-Fe  alloy  as  a  result  of  ten  passes  of  rider  in vacuum (10-8 Pa). 
A scanning  electron  micrograph  of  wear  track on sil icon  carbide (0001) surface. 
Sliding  velocity, 3x10-3  meter  per  minute; load, 0.2 newton; room temperature. 



(a) Silicon  carbide wear debris. 

(b)  Silicon K, X-ray map of 8.12 atomic  percent  Ti-Fe  alloy  rider;  1x104  counts. 

Figure 5. - Silicon  carbide wear debris on al loy as  a  result of ten  passes of rider  in 
vacuum (10-8 Pa). Scanning  electron  micrograph and an X-ray dispersive  analysis 
of wear scar on al loy rider.  Sliding  velocity,  3x10-3 meter  per  minute;  load, 0.2 
newton;  room  temperature. 
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Figure 6. - Silicon  carbide wear debris on alloy  at  high  magnification. 
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(a)  Multiangular  wear  particle. 

(b)  Nearly  square-shaped  wear  particle. 

Figure 7. - Multiangular  wear  debris of single-crystal  silicon  carbide  as  result 
of ten  passes  of  riders  in  vacuum (lom8 Pa); 1.02 atomic  percent  Ti-Fe  alloy 
slidings and 3.86 atomic  percent  Ti-Fe  alloy  slidings. Scanning  electron  micro- 
graphs of wear  tracks on disk.  Sliding  velocity, 3x104  meter  per  minute; load, 
0.2 newton;  room  temperature. 
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(a)  Spherical wear particle and groove. 

(b) Silicon, K, X-ray map of 1.02 at % Ti-Fe  alloy  rider; lx104 counts. 

Figure 8. - Spherical  wear  particle  on  alloy  as  a  result of ten  passes of rider  in vacuum 
(10-8 Pa). Scanning  electron  micrograph  and  an  X-ray  dispersive  analysis of wear 
scar on alloy  rider.  Sliding  velocity, 3x10-3 meter per  minute;  load, 0.2 newton; 
room temperature. 
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(a) Grooves  and spherical  indentations. 

(b) Groove. 

Figure 9. - Grooves  and  indentations  formed  by  plowing  and i denting  of  spherical 
wear  debris  as  result of ten  passes  of  rider i n  vacuum (10- 1 Pa).  Scanning electron 
micrographs of wear scar on 1.02 atomic  percent  Ti-Fe  alloy  rider.  Sliding 
veloclh',  meter  per  minute;  load, 0.2 newton; room temperature. 
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(a) Spherical  wear  particle. 

(b)  Spherical and multiangular wear debris. 

Figure 10. - Spherical and partially  spherical wear particle  as  result of ten  passes of 
1.02 atomic  percent  Ti-Fe  alloy  riders  in vacuum Pa). Scanning  electron  micro- 
graphs of wear tracks on disk.  Sliding  velocity, 3x10-3 meter per minute; load, 0.2 
newton; room temperature. 
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(c)  Partially spherical and partially multiangular wear particle. 

(dl  Partially rounded  and partially multiangular wear particle. 

Figure 10. - Concluded. 
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Figure 11. - Partially  spherical wear particle and multiangular wear particles  as 
result of ten  passes of 1.02 atomic  percent  Ti-Fe  alloy  rider  in  vacuum (10-8  Pa). 
Scanning  electron  micrograph  of wear scar on al loy rider.  Sliding  velocity, 3x10-3 
meter per minute; load, 0.2 newton;  room temperature. 
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(a) Brittle  fractured wear particle  with  sharp edges. 

(b) Brittle  fractured  wear  particle. 

Figure 12. - Brittle  fractured  wear  particles  as  result of ten  passes  of 1.02 atomic 
percent  Ti-Fe  alloy  rider  in  vacuum (10-8 Pa). Scanning  electron  micrographs of 
wear  track  on  disk.  Sliding  velocity,  3x10-3 meter  per  minute; load, 0.2 newton; 
room  temperature. 
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